IF-THEN RULES AND FUZZY INFERENCE

Inference

inference

\In"fer*ence\, n. [From Infer.]

- 1. The act or process of inferring by deduction or induction.
- 2. That which inferred; a truth or proposition drawn from another which is admitted or supposed to be true; a conclusion; a deduction. --Milton.

Inference is a process of obtaining new knowledge through existing knowledge.

Representation of knowledge

◆ To perform inference, knowledge should be represented in some form

Representation of knowledge as rules is the most popular form.

if x is A then y is B (where A and B are linguistic values defined by fuzzy sets on universes of discourse X and Y).

- ◆A rule is also called a fuzzy implication
- ◆"x is A" is called the antecedent or premise
- ◆"y is B" is called the consequence or conclusion

http://if.kaist.ac.kr/lecture/cs670/textbook/

Representation of knowledge

Examples:

- If pressure is high, then volume is small.
- ◆ If the road is slippery, then driving is dangerous.
- ◆ If an apple is red, then it is ripe.
- ◆ If the speed is high, then apply the brake a little.

http://if.kaist.ac.kr/lecture/cs670/textbook/

Knowledge as Rules

- ♦ How do you reason?
 - You want to play golf on Saturday or Sunday and you don't want to get wet when you play.
- ◆ Use rules!
 - If it rains, you get wet!
 - If you get wet, you can't play golf
- ♦ If it rains on Saturday and won't rain on Sunday
 - You play golf on Sunday!

*Fuzzy Thinking:The new Science of Fuzzy Logic, Bart Kosk

Knowledge as Rules

- ◆ Knowledge is rules
- ◆ Rules are in black-and-white language
 - Bivalent rules
- ◆ Al has so far, after over 30 years of research, not produced smart machines!
 - Because they can't yet put enough rules in the computer (use 100-1000 rules, need >100k)
 - Throwing more rules at the problem

*Fuzzy Thinking:The new Science of Fuzzy Logic, Bart Kosko

Forms of reasoning

Generalized Modus Ponens:

Premise: x is A'

Implication: if x is A then y is B

Consequence: y is B'

Where A, A', B, B' are fuzzy sets and x and y are symbolic names for objects.

http://if kajet ac.kr/lecture/cs670/teythook

Forms of reasoning

Generalized Modus Tolens:

Premise: y is B

Implication: if x is A then y is B

Consequence: x is A'

Where A, A', B, B' are fuzzy sets and x and y are symbolic names for objects.

http://if kaist ac.kr/lecture/cs670/textbook/

Fuzzy rule as a relation

if x is A then y is B

"x is A", "y is B" – fuzzy predicates A(x), B(y)

if A(x) then B(y)

can be represented as a relation

 $R(x,y): A(x) \rightarrow B(y)$

where R(x,y) can be considered a fuzzy set with 2-dimentional membership function

 $\mu_{\mathsf{R}}(\mathsf{x},\mathsf{y}) = \mathsf{f}(\mu_{\mathsf{A}}(\mathsf{x}),\mu_{\mathsf{B}}(\mathsf{y}))$

where f is fuzzy implication function

http://if.kaist.ac.kr/lecture/cs670/textbook/

MIN fuzzy implication

 Interprets the fuzzy implication as the minimum operation [Mamdani].

$$R_{C} = A \times B$$

$$= \int_{X \times Y} \mu_{A}(x) \wedge \mu_{B}(y) / (x, y)$$

where \wedge is the min operator

http://if.kaist.ac.kr/lecture/cs670/textbook/

PRODUCT fuzzy implication

 Interprets the fuzzy implication as the product operation [Larsen].

$$R_P = A \times B$$

= $\int_{X \times Y} \mu_A(x) \cdot \mu_B(y) / (x, y)$
where • is the algebraic product operator

http://if.kaist.ac.kr/lecture/cs670/textbook

EXAMPLE OF FUZZY IMPLICATION

Fuzzy rule:

"If temperature is high, then humidity is fairly high"

Lets define:

- ◆ T universe of discourse for temperature
- ◆ H universe of discourse for humidity
- t∈T, h∈H variables for temperature and humudity
- ♦ Denote "high" as A, A⊆T
- ◆ Denote "fairly high" as B, B⊆H

Then the rule becomes:

R(t,h): if t is A then h is B or R(t,h): $R(t) \rightarrow R(h)$

http://if.kaist.ac.kr/lecture/cs670/textbook/

EXAMPLE OF FUZZY IMPLICATION

if we know A and B, we can find $R(t,h)=A\times B$

t	2 0	3 0	40
$\mu_{\rm A}(t)$	0.1	0.5	0.9

	h	20	50	70	90
l	$\mu_{\rm B}(h)$	0.2	0.6	0.7	1

20

 $R_C(t, h) = A \times B$ $= \int \mu_{A}(t) \wedge \mu_{B}(h) / (t, h)$

90 20 0.1 0.1 0.1 0.1 30 0.2 0.5 0.5 0.5 40 0.2 0.6 0.7 0.9

50

Mamdani (min) implication

EXAMPLE OF FUZZY IMPLICATION

we know R_C(t, h) for fuzzy rule "If temperature is high, then humidity is fairly high"

According to this rule, what is the humidity when "temperature is fairly high" or t is A', A'⊆T ?

t	20	3 0	40
$\mu_{\Lambda'}(t)$	0.01	0.25	0.81

EXAMPLE OF FUZZY IMPLICATION

We can use composition of fuzzy relations to find R(h)!

	t	20	30	40
ſ	$\mu_{\Lambda}(t)$	0.01	0.25	0.81

R(t)

•					٠,
\h	20	50	7 0	90	l
tΝ					
20	0.1	0.1	0.1	0.1	
30	0.2	0.5	0.5	0.5	
40	0.2	0.6	0.7	0.9	
	20 30	t 20 0.1 30 0.2	t 20 0.1 0.1 30 0.2 0.5	t 20 0.1 0.1 0.1	t

h	20	50	70	90
$\mu_{B'}(h)$	0.2	0.6	0.7	0.81

 $R(h) = R(t) o R_C(t, h)$

COMPOSITIONAL RULE OF **INFERENCE**

In order to draw conclusions from a set of rules (rule base) one needs a mechanism that can produce an output from a collection of rules. This is done using the compositional rule of

Consider a single fuzzy rule and its inference

Rule: if v is A then w is C

Input: v is A'

Result: C'

 $A \subset U$, $C \subset W$, $v \in U$, and $w \in C$.

The fuzzy rule is interpreted as an implication

R:A→C or R=A×C

When input A' is given to the inference system,

the output $C' = A' \circ R$

http://if.kaist.ac.kr/lecture/cs670/text

COMPOSITIONAL RULE OF **INFERENCE**

 $C' = A' \circ R$

"o" is the composition operator. The inference procedure is called "compositional rule of inference". The inference mechanism is determined by two factors:

1. Implication operators:

Mamdani:

algebraic product Larsen:

2. Composition operators:

Mamdani: max-min Larsen: max-product

http://if.kaist.ac.kr/lecture/cs670/textbook

COMPOSITIONAL RULE OF **INFERENCE**

Compositional rule of inference can be represented graphically as a combination of cylindrical extension, intersection and projection of fuzzy sets:

- 1. Build a cylindrical extension of A, A(x,y)
- 2. Determine intersection of R(x,y) and A(x,y)
- 3. Build projection of $R(x,y) \land A(x,y)$

COMPOSITIONAL RULE OF **INFERENCE**

INFERENCE METHODS

There are many methods to perform fuzzy inference. Consider a fuzzy rule:

R₁: if u is A₁ and v is B₁ then w is C₁

Inputs u and v can be:

- crisp inputs. Crisp inputs can be treated as fuzzy singletons
- ◆ fuzzy sets A' and B'

MAMDANI METHOD

This method uses the minimum operation R_C as a fuzzy implication and the max-min operator for the composition.

Suppose a rule base is given in the following form: R_i : if u is A_i and v is B_i then w is C_i , i = 1, 2, ..., nfor $u \in U$, $v \in V$, and $w \in W$.

Then, $R_i = (A_i \text{ and } B_i) \rightarrow C_i \text{ is defined by}$

$$\mu_{R_i} = \mu_{(A_i \text{ and } B_i \to C_i)}(u, v, w)$$

MAMDANI METHOD

Case 1: Inputs are crisp and treated as fuzzy singletons. $u=u_0,\ v=v_0$

$$\underbrace{\mu_{C_i'}(w)}_{\text{Inference}} = \underbrace{\left[\mu_{A_i}\left(u_0\right) \ and \ \mu_{B_i}\left(v_0\right)\right]}_{\text{if ...}} \rightarrow \underbrace{\mu_{C_i}\left(w\right)}_{\text{then ...}}$$

Result

Example:

if temperature is high and humidity is high then fan speed is high

How to determine the fan speed for temperature 85°F and humidity 93%?

MAMDANI METHOD

Mamdani method uses min operator (^) as fuzzy implication function (\rightarrow) :

$$\mu_{C_i'}(w) = \alpha_i \wedge \mu_{C_i}(w)$$

where
$$\alpha_i = \mu_{A_i}(u_0) \wedge \mu_{B_i}(v_0)$$

α, is called "firing strength", "matching degree", "satisfaction degree"

MAMDANI METHOD

For multiple rules (for example, two rules R₁ and R₂):

$$\begin{split} \mu_{C'}(w) &= \mu_{C'_1} \vee \mu_{C'_2} \\ &= [\alpha_1 \wedge \mu_{C_1}(w)] \vee [\alpha_2 \wedge \mu_{C_2}(w)] \end{split}$$

$\begin{array}{c} \text{MAMDANI METHOD} \\ \text{In general:} \\ \mu_{\mathcal{C}'}(w) = \bigvee_{i=1}^n [\alpha_i \wedge \mu_{\mathcal{C}_i}(w)] = \bigvee_{i=1}^n \mu_{\mathcal{C}'_i}(w) \\ \text{max} \quad \text{min} \\ \\ \\ \text{http://f.kaist.ac.ku/lecture/cs670/textbook/} \end{array}$

EXAMPLE OF MAMDANI METHOD Let the fuzzy rule base consist of one rule: R: If u is A then v is B where A=(0, 2, 4) and B=(3, 4, 5) are triangular fuzzy sets Question 1: What is the output B' if the input is a crisp value $u_0=3$? Question 2: What is the output B' if the input is a fuzzy set A'=(0, 1, 2)?

This method uses the product operation R_p as a fuzzy implication and the max-product operator for the composition. Suppose a rule base is given in the following form: R_i : if u is A_i and v is B_i then w is C_i , i=1,2,...,n for $u\in U,v\in V$, and $w\in W$. Then, $R_i=(A_i$ and $B_i)\to C_i$ is defined by

LARSEN METHOD

 $\mu_{R_i} = \mu_{(A_i \text{ and } B_i \to C_i)}(u, v, w)$

http://if.kaist.ac.kr/lecture/cs670/textbook/

LARSEN METHOD

Case 1: Inputs are crisp and treated as fuzzy singletons. $u=u_0,\ v=v_0$

$$\begin{split} \underbrace{\mu_{C_i'}(w)} &= \underbrace{[\mu_{A_i}(u_0) \ and \ \mu_{B_i}(v_0)]} \rightarrow \underbrace{\mu_{C_i}(w)}_{\text{then ...}} \\ \text{result} &= \underbrace{[\mu_{A_i}(u_0) \land \mu_{B_i}(v_0)] \circ \mu_{C_i}(w)}_{= \alpha_i \circ \mu_{C_i}(w) \ where \ \alpha_i = \mu_{A_i}(u_0) \land \mu_{B_i}(v_0)}_{\text{then ...}} \end{split}$$

For multiple rules: $\mu_{C'}(w) = \bigvee_{i=1}^{n} [\alpha_i \circ \mu_{C_i}(w)] = \bigvee_{i=1}^{n} \mu_{C'_i}(w)$

$$C' = \bigcup_{i=1}^{n} C_i'$$

http://if kaist ac.kr/lecture/cs670/textbook/

LARSEN METHOD

Case 2: Inputs are fuzzy sets A', B'

$$\begin{split} & \mu_{C_i'}(w) = \alpha_i \circ \mu_{C_i}(w) \\ & where \ \alpha_i = \min[\max_{u} (\mu_{A'}(u) \wedge \mu_{A_i}(u)), \max_{v} (\mu_{B'}(v) \wedge \mu_{B_i}(v)) \end{split}$$

For multiple rules:

$$\begin{split} \mu_{C'}(w) &= \bigvee_{i=1}^n [\alpha_i \circ \mu_{C_i}(w)] = \bigvee_{i=1}^n \mu_{C_i'}(w) \\ C' &= \bigcup_{i=1}^n C_i' \end{split}$$

http://if.kaist.ac.kr/lecture/cs670/textbook

EXAMPLE OF LARSEN METHOD

Let the fuzzy rule base consist of one rule: R: If u is A and v is B then w is C where A=(0, 2, 4), B=(3, 4, 5) and C=(3,4,5) are triangular fuzzy sets

Question 1: What is the output C' if the inputs are crisp values u_0 =3, v_0 =4?

Question 2: What is the output C' if the inputs are fuzzy sets A'=(0, 1, 2) and B'=(2,3,4)?

http://if.kniet.ac.kr/locture/ce670/toythool

DEFUZZIFICATION

- ◆ The output of Mamdani and Larsen inference methods is a fuzzy set!
- For practical applications a crisp value is often needed
- ◆ The process of converting a fuzzy answer into a crisp value is called defuzzification

SUMMARY

- Inference the logical process by which new facts are derived from known facts by the application of inference rules.
- ◆ Fuzzy rules a convenient way to represent knowledge
- A fuzzy rule can be represented as a fuzzy relation connected by a fuzzy implication function
- ◆ The fuzzy inference procedure is called the compositional rules of inference

SUMMARY

- ◆ Mamdani and Larsen methods are two very popular methods of fuzzy inference.
- ◆ There are many more inference methods that we will consider later!
- Defuzzification is needed for the results obtained through fuzzy inference.