IF-THEN RULES
AND
FUZZY INFERENCE

Inference

inference
\In"fer*ence\, n. [From Infer.]

1. The act or process of inferring by
deduction or induction.

2. That which inferred; a truth or
proposition drawn from another which is
admitted or supposed to be true; a
conclusion; a deduction. --Milton.

Inference is a process of obtaining new.
knowledge through existing knowledge.

Representation of knowledge

¢ To perform inference, knowledge should
be represented in some form

Representation of knowledge as rules is the most
popular form.

if xis Athenyis B
(where A and B are linguistic values defined by fuzzy
sets on universes of discourse X and Y).

eA rule is also called a fuzzy implication
¢“x is A” is called the antecedent or premise
"y is B” is called the consequence or conclusion
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Representation of knowledge
Examples:

« If pressure is high, then volume is small.

« If the road is slippery, then driving is
dangerous.

« If an apple is red, then it is ripe.

+ If the speed is high, then apply the brake a
little.
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Knowledge as Rules

¢ How do you reason?
—You want to play golf on Saturday or Sunday

and you don’t want to get wet when you play.

o Use rules!
— If it rains, you get wet!
— If you get wet, you can’t play golf
o If it rains on Saturday and won'’t rain on
Sunday
— You play golf on Sunday!

*Fuzzy Thinking The new Science of Fuzzy Logic, Bart Kosko

Knowledge as Rules

¢ Knowledge is rules

« Rules are in black-and-white language
— Bivalent rules

+ Al has so far, after over 30 years of
research, not produced smart machines!

— Because they can't yet put enough rules in the
computer (use 100-1000 rules, need >100k}

— Throwing more rules at the problem

*Fuzzy Thinking The new Science of Fuzzy Logic, Bart Kosko




Forms of reasoning
Generalized Modus Ponens:
Premise: Xis A

Implication: if xis Athen yis B
Consequence: yisB’

Where A, A’, B, B’ are fuzzy sets and x and y
are symbolic names for objects.
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Forms of reasoning
Generalized Modus Tolens:
Premise: yis B’

Implication: if xis Athen yis B
Consequence: xis A’

Where A, A’, B, B’ are fuzzy sets and x and y
are symbolic names for objects.
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Fuzzy rule as a relation

if xis Athenyis B
“x is A”, “y is B” — fuzzy predicates A(x), B(y)
if A(x) then B(y)
can be represented as a relation
R(x.y): A(x) — B(y)
where R(x,y) can be considered a fuzzy set
with 2-dimentional membership function

HR(XY)=F(1a(X).u5(Y))
where f is fuzzy implication function
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MIN fuzzy implication

« Interprets the fuzzy implication as the minimum
operation [Mamdani].
Rc=AxB
= J',\ o MA(X) A (v / (x,»)

where A is the min operator
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PRODUCT fuzzy implication

« Interprets the fuzzy implication as the product
operation [Larsen].

Rp=AxB

= [y a0+ 180/ (5, )

where . is the algebraic product operator
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EXAMPLE OF FUZZY
IMPLICATION

Fuzzy rule:
“If temperature is high, then humidity is fairly high”

Lets define:

& T —universe of discourse for temperature

& H —universe of discourse for humidity

o teT, heH — variables for temperature and humudity
¢ Denote “high” as A, ACT

« Denote “fairly high” as B, BcH

Then the rule becomes:

R(t,h):iftis Athenhis B or R(t,h): R(t) =R(h)
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EXAMPLE OF FUZZY
IMPLICATION

if we know A and B, we can find R(t,h)=AxB

t 20 30 40 h 20 50 70 90

Mm@ | 01 05 | 09 Hy(h) 0.2 0.6 0.7 1

Ro(t, h) =Ax B
= [up(t) A ug(h) / (t, h) 20 | 01|01 01]o01
30 | 02| 05|05 05

Mamdani (min)
implication

40 ( 02 | 06 [ 077 09
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EXAMPLE OF FUZZY
IMPLICATION

we know R(t, h) for fuzzy rule
“If temperature is high, then humidity is fairly high”

According to this rule, what is the humidity when
“temperature is fairly high” ortis A’, A'cT ?

t 20 30 40

Pt 0.01 0.25 0.81
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EXAMPLE OF FUZZY
IMPLICATION

We can use composition of fuzzy relations to find R(h)!

t | 20 [ 30 | 40 n[ 2050 70 | 90
u® | 001 | 025 | 081 t

20 |01 010101
R(t)

30/02|05|05]|05

RC(t’ h) 40 | 02| 06 | 0.7 | 0.9

n | 20 | 50 | 70 | %0
mw | 0z | 06 | o7 | oer | R(h) =R(t) o Rg(t, h)
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COMPOSITIONAL RULE OF
INFERENCE

In order to draw conclusions from a set of rules (rule base) one
needs a mechanism that can produce an output from a
collection of rules. This is done using the compositional rule of
inference.

Consider a single fuzzy rule and its inference
Rule:if vis Athenwis C
Input: v is A”
Result: C’
AcU,CcW,ve U,andwe C.
The fuzzy rule is interpreted as an implication
R:A—C or R=AxC
When input A" is given to the inference system,
the output C’ = A’ o R
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COMPOSITIONAL RULE OF
INFERENCE

C'=A0oR
“0" is the composition operator. The inference
procedure is called “compositional rule of inference”.
The inference mechanism is determined by two
factors:
1. Implication operators:
Mamdani:  min
Larsen: algebraic product
2. Composition operators:
Mamdani:  max-min
Larsen: max-product
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COMPOSITIONAL RULE OF
INFERENCE

Compositional rule of inference can be
represented graphically as a combination of
cylindrical extension, intersection and
projection of fuzzy sets:

1. Build a cylindrical extension of A, A(x,y)
2. Determine intersection of R(x,y) and A(x,y)
3. Build projection of R(x,y)AA(X,y)




COMPOSITIONAL RULE OF
INFERENCE

d Y

INFERENCE METHODS

There are many methods to perform fuzzy
inference. Consider a fuzzy rule:

R;:ifuis Ayandvis B; thenwis C,

Inputs u and v can be:

# crisp inputs. Crisp inputs can be treated as
fuzzy singletons

o fuzzy sets A’ and B’
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MAMDANI METHOD

This method uses the minimum operation R; as a
fuzzy implication and the max-min operator for the
composition.

Suppose a rule base is given in the following form:

Ri:ifuis Ajandvis B;thenwisC;, i=1,2,...,n
forue U,ve V,andwe W.
Then, R, = (A;and B)) — G, is defined by

10, =1l (v, w
¢, (W, v, w)

IR, (A and B, —
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MAMDANI METHOD

Case 1: Inputs are crisp and treated as fuzzy singletons.
U=y V=V,

U (w)

T

uelw) =, (u,) and u, (,\/@] —

A,

%('_J
Inference if ... then ...
Result
Example:

if temperature is high and humidity is high then fan speed is high

How to determine the fan speed for temperature 85°F and humidity.
93%?
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MAMDANI METHOD

Mamdani method uses min operator (A) as fuzzy
implication function (—):
He W) =041 e, (W)

where ¢, = 11, (uy) A i, (vy)

M MIN of &
Because of 1

and €,
the “AND" Because of
connective the
}1, / implication
pu- tunction,
o
0

v W

http://if.kaist.ac.kr/lecture/cs670/textbook/

MAMDANI METHOD

For multiple rules (for example, two rules Ry and Ry):

e (W) = e V Yo,

U
=1
=[oy A e, (W) [0ty A pie, (w)]

0 L 0 0
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MAMDANI METHOD

In general:

n n

pe(w)=vlo, np (w)]= e (w)
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MAMDANI METHOD

Case 2: Inputs are fuzzy sets A’, B’

Mo W)= npie (w)

where ¢, = min[max (i, (u) A 1, (u)), mazx (i, (v) A i, (v)
u ’ v 3 i
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MAMDANI METHOD

For multiple rules, i (w)=Yie, n g (m]= Y pie. ()
c=uc
i=l

14,4 1| B,

A " A

A
Y

B
\ 0
v

/ \\
u 2!
1 &, ‘/\,L 1 5 /<\E, 1 3 0

n n

LRI 1A
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EXAMPLE OF MAMDANI
METHOD

Let the fuzzy rule base consist of one rule:
R: Ifuis Athenvis B
where A=(0, 2, 4) and B=(3, 4, 5) are
triangular fuzzy sets

Question 1: What is the output B’ if the input is a
crisp value uy=37?

Question 2: What is the output B’ if the input is a
fuzzy set A’=(0, 1, 2)?
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EXAMPLE OF MAMDANI
METHOD

Furzy inference with input 1,=3 Fuzzy inference with input A’=(0, 1, 2).
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LARSEN METHOD

This method uses the product operation Ry as a fuzzy
implication and the max-product operator for the
composition.

Suppose a rule base is given in the following form:
Ri:ifuis Ajandvis B;thenwisC;, i=1,2,...,n
forue U,ve V,andwe W.
Then, R, = (A;and B)) — G, is defined by

luff, = IM(A, and B; =C;) (//[‘/ Y, \/V)

http://if.kaist. ac.kr/lecture/cs670/textbook/




LARSEN METHOD

Case 1: Inputs are crisp and treated as fuzzy singletons.
U= Uy V=V,

e (W) =L, (uy) and g, (v)] = pg, (w)

Inference it ... then ...

resutt = [, (ug) Aty (vp)]o e ()
=0y (W) where =, (uy)r i, (vy)

' 7
16‘

ISH

=

i
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LARSEN METHOD

W

T | ‘_A_
T u ! v w1
1 i 1 3 1 o
} _A_

v min

Graphical representation of Larsen method with singleton input
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LARSEN METHOD

Case 2: Inputs are fuzzy sets A’, B’

Mo (W)=t 5t (w)

where ¢, = min[maz (4, (u) A p, (), max (g, (v) A iy (v)
For multiple rules:

n
U (w)=Ye, > e, (w)]= ‘\/J He; (w)
i

i
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LARSEN METHOD

1 . oA 1
SN S 4
N7\ ol X 5 ££§§
u v w1
1 ; s 1 0
S FAN % A
ol ol 0
u v min w

Graphical representation of Larsen method with fuzzy set inputs
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EXAMPLE OF LARSEN METHOD

Let the fuzzy rule base consist of one rule:
R: Ifuis Aand vis B then wis C
where A=(0, 2, 4), B=(3, 4, 5) and C=(3,4,5)
are triangular fuzzy sets

Question 1: What is the output C’ if the inputs are
crisp values uy,=3, vy=47?

Question 2: What is the output C’ if the inputs are
fuzzy sets A’=(0, 1, 2) and B'=(2,3,4)?
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EXAMPLE OF LARSEN METHOD

B

/

2 3 1 3 4 5 3 1 5
i, t
Larsen method with input u, =3, v=4
N .
1 A L L As !
Y i iy c
2/3 A E i I \
\ LA
+ “ Y £ +
0, 2 1 2 3 4 5 3 1 5

Larsen method with input A’=(0, 1, 2), B'’=(2, 3, 4).
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DEFUZZIFICATION

& The output of Mamdani and Larsen
inference methods is a fuzzy set!

« For practical applications a crisp value is
often needed

¢ The process of converting a fuzzy answer
into a crisp value is called defuzzification

SUMMARY

¢ Inference - the logical process by which
new facts are derived from known facts by
the application of inference rules.

& Fuzzy rules - a convenient way to
represent knowledge

o A fuzzy rule can be represented as a fuzzy
relation connected by a fuzzy implication
function

¢ The fuzzy inference procedure is called the
compositional rules of inference

SUMMARY

¢ Mamdani and Larsen methods are two very
popular methods of fuzzy inference.

¢ There are many more inference methods
that we will consider later!

¢ Defuzzification is needed for the results
obtained through fuzzy inference.




